Светодиодная продукция: различия между версиями

Материал из wiki
Перейти к навигации Перейти к поиску
 
(не показано 12 промежуточных версий этого же участника)
Строка 6: Строка 6:


Конструкция распространённого светодиода диаметром 5 мм в пластмассовом корпусе [[Файл:LED, 5mm, green (ru).svg.png|мини|Внешний вид одиночного светодиода]]
Конструкция распространённого светодиода диаметром 5 мм в пластмассовом корпусе [[Файл:LED, 5mm, green (ru).svg.png|мини|Внешний вид одиночного светодиода]]
При пропускании электрического тока через p-n-переход в прямом направлении носители заряда — электроны и дырки — движутся навстречу и рекомбинируют в обеднённом слое диода с излучением фотонов из-за перехода электронов с одного энергетического уровня на другой.Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Эффективные излучатели относятся к прямозонным полупроводникам, то есть к таким, в которых разрешены прямые оптические межзонные переходы, типа AIIIBV (например, GaAs или InP) и типа AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).  
При пропускании электрического тока через p-n-переход в прямом направлении носители заряда — электроны и дырки — движутся навстречу и рекомбинируют в обеднённом слое диода с излучением фотонов из-за перехода электронов с одного энергетического уровня на другой. Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Эффективные излучатели относятся к прямозонным полупроводникам, то есть к таким, в которых разрешены прямые оптические межзонные переходы, типа AIIIBV (например, GaAs или InP) и типа AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).  
Диоды, изготовленные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. В связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.
Диоды, изготовленные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. В связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.


Строка 33: Строка 33:
В середине 1970-х годов в ФТИ им. А. Ф. Иоффе группой под руководством Жореса Алфёрова были получены новые материалы — полупроводниковые гетероструктуры, в настоящее время применяемые для создания лазерных светодиодов. После этого началось серийное промышленное производство светодиодов на гетероструктурах. Открытие было удостоено Нобелевской премий в 2000 году. В 1983 году компания Citizen Electronics первой разработала и начала производство SMD-светодиодов, назвав их CITILED.
В середине 1970-х годов в ФТИ им. А. Ф. Иоффе группой под руководством Жореса Алфёрова были получены новые материалы — полупроводниковые гетероструктуры, в настоящее время применяемые для создания лазерных светодиодов. После этого началось серийное промышленное производство светодиодов на гетероструктурах. Открытие было удостоено Нобелевской премий в 2000 году. В 1983 году компания Citizen Electronics первой разработала и начала производство SMD-светодиодов, назвав их CITILED.


В начале 1990-х Исама Акасаки, работавший вместе с Хироси Амано в университете Нагоя, а также Сюдзи Накамура, работавший в то время исследователем в японской корпорации «Nichia Chemical Industries», изобрели технологию изготовления синего светодиода. За открытие технологии изготовления дешевого синего светодиода в 2014 году им троим была присуждена Нобелевская премия по физике. В 1993 году Nichia начала их промышленный выпуск, а в 1996 начала выпуск белых светодиодов.
В начале 1990-х Исама Акасаки, работавший вместе с Хироси Амано в университете Нагоя, а также Сюдзи Накамура, работавший в то время исследователем в японской корпорации «Nichia Chemical Industries», изобрели технологию изготовления синего светодиода. За открытие технологии изготовления дешевого синего светодиода в 2014 году им троим была присуждена Нобелевская премия по физике. Благодаря этому изобретению, замкнулся «RGB-круг», и теперь появилась возможность получить любой цветовой оттенок, в том числе и различные оттенки белого цвета, путем обычного смешения цветов. В 1993 году Nichia начала их промышленный выпуск, а в 1996 начала выпуск белых светодиодов.


Сочетание света синего, зелёного и красного светодиодов даёт белый свет с высокой энергетической эффективностью, что позволило в дальнейшем создать, среди прочего, светодиодные светильники и экраны со светодиодной подсветкой. В 2003 году компания Citizen Electronics первой в мире произвела светодиодный модуль по запатентованной технологии, непосредственно вмонтировав кристалл от Nichia на алюминиевую подложку с помощью диэлектрического клея по технологии Chip-On-Board.
Сочетание света синего, зелёного и красного светодиодов даёт белый свет с высокой энергетической эффективностью, что позволило в дальнейшем создать, среди прочего, светодиодные светильники и экраны со светодиодной подсветкой. В 2003 году компания Citizen Electronics первой в мире произвела светодиодный модуль по запатентованной технологии, непосредственно вмонтировав кристалл от Nichia на алюминиевую подложку с помощью диэлектрического клея по технологии Chip-On-Board.


== Цвета светодиодов ==  
== Новое поколение ==


Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами. [[Файл:Smd.jpg|мини|smd]]
К декабрю 1997 года компанией Nichia Chemical Industries были запатентованы главные этапы технологии. Вскоре объем реализации голубых и зеленых светодиодов, произведенных этой компанией, достиг 20 миллионов штук в месяц.
* Покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.
К концу ХХ столетия, общее количество выпускаемых светодиодов в мире десятки миллиардов.
* RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.
К началу 1990-х годов светоотдача промышленный полупроводниковых светодиодов уже перешагнула рубеж в 30 лм/Вт. С этого времени светодиоды становятся адекватной альтернативой лампам накаливания.
* Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.
В 1997 году инженер Фред Шуберт изготовил первый в мире светодиод, излучающий белый свет.
 
А в 1998 году компанией Корвет-Лайтс был начат выпуск светодиодов нового поколения
=== Белый светодиод ===
К 1999 году ежемесячный выпуск зеленых и голубых светодиодов компаниями «Toyoda Gosei», «Nichia Chemical», «Cree» и «Hewlett Packard» составляет около сотни миллионов штук.
 
В июле месяце 1999 года доктор Накамура объявил, что яркость излучения светодиодов достигает уже 60 лм/Вт, а мощность светодиодов на основе InGaN, излучающих желтый свет, равна 6 мВт.
Существует три способа получения белого света от светодиодов. [[Файл:Cob.jpg|мини|Cob]]
2000 год – начался массовый выпуск светодиодов компаниями «Osram» и «Nichia Chemical».
* смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет.
В том же, 2000 году «Большой Тройкой» - LumiLeds / Phillips, Osram / Cree и GELcore / Uniroyal/GE было инвестировано свыше 70 миллионов долларов в исследовательскую деятельность, связанную с возможностями применения и производства светодиодов.
* поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа.
К середине 2006 года среднее количество электронных придорожных рекламных «биллбордов» на территории США приравнивалось к 200 штук, однако уже через год это количество удвоилось. Благодаря такой рекламе, произошел ощутимый скачок во всех сферах производства и реализации продукции.
* желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.


== Технология изготовления светодиодов ==
== Технология изготовления светодиодов ==
Строка 62: Строка 61:
=== Биннирование ===
=== Биннирование ===


Биннирование - сортировка чипов — особенно важный процесс производства светодиодов, о котором несправедливо часто забывают упоминать в литературе. Дело в том, что при производстве любой продукции должны соблюдаться некие критерии отбора. Но на вышеописанных стадиях производства светодиода невозможно добиться абсолютного сходства изделий по его характеристикам. Изготовленные чипы изначально имеют характеристики, различающиеся в некотором диапазоне. Чипы сортируют на группы-бины. В каждой группе определённый параметр варьируется в определённых пределах. Сортируют их по:
Биннирование - сортировка чипов. При производстве любой продукции должны соблюдаться некие критерии отбора. Но на вышеописанных стадиях производства светодиода невозможно добиться абсолютного сходства изделий по его характеристикам. Изготовленные чипы изначально имеют характеристики, различающиеся в некотором диапазоне. Чипы сортируют на группы-бины. В каждой группе определённый параметр варьируется в определённых пределах. Сортируют их по:


# длине волны максимума излучения;
# длине волны максимума излучения;
Строка 71: Строка 70:
=== Создание светодиодов из чипов ===
=== Создание светодиодов из чипов ===


Следующим шагом является создание светодиодов из этих чипов. Это заключительный этап технологической цепочки. Создаётся корпус будущего источника света, монтируются выводы, подбирается люминофор, если он необходим. Но особо стоит отметить такую важную часть, как изготовление линз. Линзы для светодиодов изготавливают из эпоксидной смолы, силикона или пластика. К ним предъявляется широкий спектр требований, т.к. оптическая система (линза) светодиода играет большую роль: направляет световой поток светодиода в нужный телесный угол.
Следующим заключительным шагом является создание светодиодов из этих чипов. Создаётся корпус будущего источника света, монтируются выводы, подбирается люминофор, если он необходим, а также изготовление линз. Линзы для светодиодов изготавливают из эпоксидной смолы, силикона или пластика. К ним предъявляется широкий спектр требований, т.к. оптическая система (линза) светодиода играет большую роль: направляет световой поток светодиода в нужный телесный угол.
   
   
Линзы должны:
Линзы должны:
Строка 80: Строка 79:
* обладать высоким сроком службы.
* обладать высоким сроком службы.


Около половины стоимости светодиода определяется этими этапами высокой технологии. Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Эта технология обеспечивает выращивание чипа кристалла непосредственно на подложке или радиаторе светодиода, что в свою очередь обеспечивает более качественный теплоотвод.  
==  Получение цвета светодиодов ==
 
Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами. 
* Покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.
* RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение. 
* Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.
[[Файл:Получение белого.png|мини|белый свет]]
 
=== Получение светодиода с белым свечением ===
Существует три способа получения белого света от светодиодов.
* смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет.
* поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа.
* желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.
   
   
== Электрические и оптические характеристики светодиодов ==
== Электрические и оптические характеристики светодиодов ==
Строка 87: Строка 98:


При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.
При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.
Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности.


== Виды светодиодов, классификация ==
== Виды светодиодов, классификация ==
Строка 97: Строка 106:


* Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.  
* Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.  
[[Файл:Dip-svetodiody.jpg|мини|dip]]


* Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.   
* Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.   
* Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.  
* Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.  


* Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.  
* Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.  


* Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. [[Файл:Oled.jpg|мини|Oled]]
* Волоконные – разработка 2015 года. Могут использоваться в производстве одежды.  


* Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.  
* Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.  
Строка 111: Строка 120:


* В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.
* В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.
<gallery>
Dip-svetodiody.jpg|мини|Dip
Smd.jpg|мини|Smd
Cob.jpg|мини|Cob
Volokonnye.jpg|мини|Волоконные светодиоды
Oled.jpg|мини|Oled
</gallery>


== Полярность светодиодов ==
== Полярность светодиодов ==
Строка 130: Строка 147:


* Экономично.
* Экономично.
В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и, теоретически, это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод - низковольтный электроприбор, а стало быть, безопасный.
В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и, теоретически, это можно сделать почти без потерь. Действительно, светодиод - при должном теплоотводе - мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод - низковольтный электроприбор, а стало быть, безопасный.


* Удобно...
* Удобно
Светодиодный модуль - многокомпонентная структура с неприхотливой схемой подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное световое излучение. Гигантский ресурс работы светодиодов практически решает проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие диоды способны надежно функционировать в самом широком диапазоне рабочих температур.
Светодиодный модуль - многокомпонентная структура с неприхотливой схемой подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное световое излучение. Гигантский ресурс работы светодиодов практически решает проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие диоды способны надежно функционировать в самом широком диапазоне рабочих температур.


* Надежно
* Надежно
Есть надежность совершенно особого рода - та, от которой порою зависят человеческие жизни. Применение светодиодов в устройствах отображения информации (дорожные знаки, светофоры, информационные табло и т.д.) ведет к значительному увеличению расстояния их восприятия человеческим глазом. Неслучайно во многих крупных городах развитых стран уже нет обычных светофоров, а светодиодные схемы используются в воздушных и надводных навигационных системах. Другим аспектом, благодаря которому светодиодам некоторыми заказчиками отдается предпочтение, являются их прочность и антивандальные качества. В отличие от стеклянных трубок данные источники света изготовлены из пластика. За счет этого их нелегко вывести из строя посредством механических повреждений. Характерное напряжение, необходимое для работы одного светодиода, - 3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер безопасности или нет возможности использовать высокие напряжения, светодиоды являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как упоминалось ранее, составляет 10-12 В. Очевидно, что при низком напряжении не требуется применять провода большого сечения с сильной изоляцией. Это также облегчает подключение светодиодов к электросети. У газоразрядных трубок, в отличие от светодиодов, есть порог срабатывания: чтобы источник света загорелся, в начале необходимо подать на разряд необходимое напряжение. Светодиоды же начинают излучать свет сразу при подключении к электросети, и их яркость легко регулировать наращиванием или снижением напряжения практически сразу после включения. Одним из важных преимуществ светодиодов является устойчивость к воздействию низких температур. Известно, что на морозе внутри газоразрядных источников света происходит вымерзание ртути, и это приводит к снижению яркости свечения. При отрицательных температурах также возникают проблемы с включением неона. Светодиоды лишены этих минусов.
Применение светодиодов в устройствах отображения информации: дорожные знаки, светофоры, информационные табло и т.д. ведет к значительному увеличению расстояния их восприятия человеческим глазом.  
 
* Прочность и антивандальные качества.
В отличие от стеклянных трубок данные источники света изготовлены из пластика. За счет этого их нелегко вывести из строя посредством механических повреждений. Характерное напряжение, необходимое для работы одного светодиода, - 3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер безопасности или нет возможности использовать высокие напряжения, светодиоды являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как упоминалось ранее, составляет 10-12 В. То есть при низком напряжении не требуется применять провода большого сечения с сильной изоляцией. Это также облегчает подключение светодиодов к электросети. Светодиоды же начинают излучать свет сразу при подключении к электросети, и их яркость легко регулировать наращиванием или снижением напряжения практически сразу после включения. Одним из важных преимуществ светодиодов является устойчивость к воздействию низких температур.  


* Красиво
* Красиво
Если бы LED-технологии не изобрели светотехники, их бы создали дизайнеры. Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные возможности для «игры» со спектрами, цепочки которых можно выстроить таким образом, чтобы световые акценты точно работали на образ. Плавные, почти незаметные для глаза световые переходы от пика к пику в плане выразительности, конечно, уступают живописи, но оставляют далеко позади другие источники света. Изощренная цветодинамика, характерная для светодиодных модулей, способна удовлетворить требования самого требовательного дизайнера. Интересно, что игра со спектрами имеет и экологическое значение. Ведь кривые чувствительности, скажем, растений и человеческого глаза не совпадают: те спектры, которые комфортны для нашего глаза, часто дискомфортны для растений, и наоборот. Зональное использование различных светодиодных «цепочек» в тех интерьерах, где одновременно пребывают и растения, и человек, снимают эту проблему.
Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные возможности для «игры» со спектрами, цепочки которых можно выстроить таким образом, чтобы световые акценты точно работали на образ. Изощренная цветодинамика, характерная для светодиодных модулей. Интересно, что игра со спектрами имеет и экологическое значение. Ведь кривые чувствительности, скажем, растений и человеческого глаза не совпадают: те спектры, которые комфортны для нашего глаза, часто дискомфортны для растений, и наоборот. Зональное использование различных светодиодных «цепочек» в тех интерьерах, где одновременно пребывают и растения, и человек, снимают эту проблему.


* Представительно
* Представительно
Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся на удивление выразительно и необычно. Доля рынка светотехнических изделий, занимаемая светодиодами, составляет ничтожную долю. В развитых странах, особенно в крупных городах и столицах, она медленно, но верно возрастает. Своеобразным символом этой нежной и неизбежной революции стало гигантское 500-метровое полотно из светодиодов, непрерывно протянувшееся над главной улицей Лас-Вегаса.
Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся выразительно и необычно.

Текущая версия на 15:28, 23 апреля 2021

Светодио́д или светоизлуча́ющий дио́д (СД, СИД; англ. light-emitting diode, LED) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра, т. е. светодиод изначально излучает практически монохроматический свет (если речь идёт о СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, от которой определённый цвет свечения можно получить лишь применением светофильтра. Спектральный диапазон излучения светодиода в основном зависит от типа и химического состава использованных полупроводников и ширины запрещённой зоны.

Принцип работы

Конструкция распространённого светодиода диаметром 5 мм в пластмассовом корпусе

Внешний вид одиночного светодиода

При пропускании электрического тока через p-n-переход в прямом направлении носители заряда — электроны и дырки — движутся навстречу и рекомбинируют в обеднённом слое диода с излучением фотонов из-за перехода электронов с одного энергетического уровня на другой. Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Эффективные излучатели относятся к прямозонным полупроводникам, то есть к таким, в которых разрешены прямые оптические межзонные переходы, типа AIIIBV (например, GaAs или InP) и типа AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). Диоды, изготовленные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. В связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

История

Первое известное сообщение об излучении света твердотельным диодом было сделано в 1907 году британским экспериментатором Генри Раундом из Маркони Лабс. Раунд впервые открыл и описал электролюминесценцию, обнаруженную им при изучении прохождения тока в паре металл — карбид кремния (карборунд, химическая формула SiC), и отметил возникновение жёлтого, зелёного и оранжевого свечение на катоде прибора.

О. Лосев, физик, обнаруживший электролюминесценцию в карбиде кремния

Эти эксперименты были позже, независимо от Раунда, повторены в 1923 году О. В. Лосевым, который, экспериментируя в Нижегородской радиолаборатории с кристаллическими детекторами радиоволн, видел свечение в точке контакта двух разнородных материалов, наиболее сильное — в паре карборунд — стальная игла, таким образом, он обнаружил электролюминесценцию полупроводникового перехода (в то время понятия «полупроводниковый переход» ещё не существовало). Наблюдение эффекта электролюминесценции в месте контакта карборунд—сталь было опубликовано им в советском журнале «Телеграфия и телефония без проводов», а в 1927 году он получил патент (в патенте устройство названо «световое реле»). Лосев умер в блокадном Ленинграде в 1942 году, и его работы были забыты, публикация не была замечена научным сообществом и много лет спустя светодиод был изобретён за рубежом.

Лосев показал, что электролюминесценция возникает вблизи спая материалов. Хотя теоретического объяснения наблюдаемому явлению ещё не было, Лосев оценил практическую значимость своего открытия. Благодаря эффекту электролюминесценции появилась возможность создать малогабаритный источник света с очень низким для того времени напряжением питания (менее 10 В) и высоким быстродействием. Он назвал будущее устройство «Световое реле» и получил два авторских свидетельства, заявку на первое из них подал в феврале 1927 г.

инфракрасный светодиод

В 1961 году Джеймс Роберт Байард и Гари Питтман из компании Texas Instruments, независимо от Лосева, открыли технологию изготовления инфракрасного светодиода на основе арсенида галлия (GaAs). После получения патента в 1962 году началось их промышленное производство.

красный светодиод

Первый в мире практически применимый светодиод, работающий в световом (красном) диапазоне, разработал Ник Холоньяк в Университете Иллинойса для компании General Electric в 1962 году. Холоньяк, таким образом, считается «отцом современного светодиода».

желтый светодиод

Его бывший студент, Джордж Крафорд, изобрёл первый в мире жёлтый светодиод и увеличил яркость красных и красно-оранжевых светодиодов в 10 раз в 1972 году. В 1976 году Т. Пирсол создал первый в мире высокоэффективный светодиод высокой яркости для телекоммуникационных применений, специально адаптированный к передаче данных по волоконно-оптическим линиям связи.

синий светодиод

Светодиоды оставались очень дорогими вплоть до 1968 года (около $200 за штуку), поэтому их практическое применение было ограничено. Исследования Жака Панкова в лаборатории RCA привели к промышленному производству светодиодов, в 1971 году он с коллегами получил синее свечение на нитриде галлия и создал первый синий светодиод. Компания «Монсанто» была первой, организовавшей массовое производство светодиодов, работающих в диапазоне видимого света и применимых в индикаторах. Компания «Хьюллет-Паккард» применила светодиодные индикаторы в своих ранних массовых карманных калькуляторах.

В середине 1970-х годов в ФТИ им. А. Ф. Иоффе группой под руководством Жореса Алфёрова были получены новые материалы — полупроводниковые гетероструктуры, в настоящее время применяемые для создания лазерных светодиодов. После этого началось серийное промышленное производство светодиодов на гетероструктурах. Открытие было удостоено Нобелевской премий в 2000 году. В 1983 году компания Citizen Electronics первой разработала и начала производство SMD-светодиодов, назвав их CITILED.

В начале 1990-х Исама Акасаки, работавший вместе с Хироси Амано в университете Нагоя, а также Сюдзи Накамура, работавший в то время исследователем в японской корпорации «Nichia Chemical Industries», изобрели технологию изготовления синего светодиода. За открытие технологии изготовления дешевого синего светодиода в 2014 году им троим была присуждена Нобелевская премия по физике. Благодаря этому изобретению, замкнулся «RGB-круг», и теперь появилась возможность получить любой цветовой оттенок, в том числе и различные оттенки белого цвета, путем обычного смешения цветов. В 1993 году Nichia начала их промышленный выпуск, а в 1996 начала выпуск белых светодиодов.

Сочетание света синего, зелёного и красного светодиодов даёт белый свет с высокой энергетической эффективностью, что позволило в дальнейшем создать, среди прочего, светодиодные светильники и экраны со светодиодной подсветкой. В 2003 году компания Citizen Electronics первой в мире произвела светодиодный модуль по запатентованной технологии, непосредственно вмонтировав кристалл от Nichia на алюминиевую подложку с помощью диэлектрического клея по технологии Chip-On-Board.

Новое поколение

К декабрю 1997 года компанией Nichia Chemical Industries были запатентованы главные этапы технологии. Вскоре объем реализации голубых и зеленых светодиодов, произведенных этой компанией, достиг 20 миллионов штук в месяц. К концу ХХ столетия, общее количество выпускаемых светодиодов в мире десятки миллиардов. К началу 1990-х годов светоотдача промышленный полупроводниковых светодиодов уже перешагнула рубеж в 30 лм/Вт. С этого времени светодиоды становятся адекватной альтернативой лампам накаливания. В 1997 году инженер Фред Шуберт изготовил первый в мире светодиод, излучающий белый свет. А в 1998 году компанией Корвет-Лайтс был начат выпуск светодиодов нового поколения К 1999 году ежемесячный выпуск зеленых и голубых светодиодов компаниями «Toyoda Gosei», «Nichia Chemical», «Cree» и «Hewlett Packard» составляет около сотни миллионов штук. В июле месяце 1999 года доктор Накамура объявил, что яркость излучения светодиодов достигает уже 60 лм/Вт, а мощность светодиодов на основе InGaN, излучающих желтый свет, равна 6 мВт. 2000 год – начался массовый выпуск светодиодов компаниями «Osram» и «Nichia Chemical». В том же, 2000 году «Большой Тройкой» - LumiLeds / Phillips, Osram / Cree и GELcore / Uniroyal/GE было инвестировано свыше 70 миллионов долларов в исследовательскую деятельность, связанную с возможностями применения и производства светодиодов. К середине 2006 года среднее количество электронных придорожных рекламных «биллбордов» на территории США приравнивалось к 200 штук, однако уже через год это количество удвоилось. Благодаря такой рекламе, произошел ощутимый скачок во всех сферах производства и реализации продукции.

Технология изготовления светодиодов

Технология выращивания кристаллов

Технология выращивания кристаллов называется — металлоорганическая эпитаксия. Эпитаксия — это ориентированный рост одного кристалла на поверхности другого (подложки). Эпитаксиальный рост полупроводников (а светодиод — это именно полупроводник) осуществляется методом термического разложения (пиролиза) металлорганических соединений, содержащих необходимые химические элементы. Толщины выращиваемых слоёв измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области. За один процесс, который длится несколько часов, можно вырастить структуры на 6–12 подложках диаметром 50–75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5–2 млн. долларов.

Создание чипов

На этом этапе имеют место такие процессы, как травление, создание контактов к n- и р-слоям, покрытие металлическими плёнками для контактных выводов, резка. Плёнку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24 x 0,24 до 1 x 1 кв. мм. Весь этот комплекс получил название «планарная обработка плёнок».

Биннирование

Биннирование - сортировка чипов. При производстве любой продукции должны соблюдаться некие критерии отбора. Но на вышеописанных стадиях производства светодиода невозможно добиться абсолютного сходства изделий по его характеристикам. Изготовленные чипы изначально имеют характеристики, различающиеся в некотором диапазоне. Чипы сортируют на группы-бины. В каждой группе определённый параметр варьируется в определённых пределах. Сортируют их по:

  1. длине волны максимума излучения;
  2. напряжению;
  3. световому потоку (или осевой силе света)

и т. д.

Создание светодиодов из чипов

Следующим заключительным шагом является создание светодиодов из этих чипов. Создаётся корпус будущего источника света, монтируются выводы, подбирается люминофор, если он необходим, а также изготовление линз. Линзы для светодиодов изготавливают из эпоксидной смолы, силикона или пластика. К ним предъявляется широкий спектр требований, т.к. оптическая система (линза) светодиода играет большую роль: направляет световой поток светодиода в нужный телесный угол.

Линзы должны:

  • максимально прозрачными;
  • пропускать свет во всём оптическом диапазоне;
  • обладать хорошей клейкостью материала к материалу печатной платы;
  • быть температурностабильными;
  • обладать высоким сроком службы.

Получение цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.

  • Покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.
  • RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.
  • Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.
белый свет

Получение светодиода с белым свечением

Существует три способа получения белого света от светодиодов.

  • смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет.
  • поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа.
  • желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

Электрические и оптические характеристики светодиодов

Светодиод - низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше - от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды. Осветительные приборы используются для создания яркого освещения в помещении.

По типу исполнения выделяют:

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.
  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.
  • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.
  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды.
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.
  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии.
  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении. Полярность можно определить несколькими способами:

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами.
  1. в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1.
  2. в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует.
  3. путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

Преимущества

  • Экономично.

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и, теоретически, это можно сделать почти без потерь. Действительно, светодиод - при должном теплоотводе - мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод - низковольтный электроприбор, а стало быть, безопасный.

  • Удобно

Светодиодный модуль - многокомпонентная структура с неприхотливой схемой подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное световое излучение. Гигантский ресурс работы светодиодов практически решает проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие диоды способны надежно функционировать в самом широком диапазоне рабочих температур.

  • Надежно

Применение светодиодов в устройствах отображения информации: дорожные знаки, светофоры, информационные табло и т.д. ведет к значительному увеличению расстояния их восприятия человеческим глазом.

  • Прочность и антивандальные качества.

В отличие от стеклянных трубок данные источники света изготовлены из пластика. За счет этого их нелегко вывести из строя посредством механических повреждений. Характерное напряжение, необходимое для работы одного светодиода, - 3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер безопасности или нет возможности использовать высокие напряжения, светодиоды являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как упоминалось ранее, составляет 10-12 В. То есть при низком напряжении не требуется применять провода большого сечения с сильной изоляцией. Это также облегчает подключение светодиодов к электросети. Светодиоды же начинают излучать свет сразу при подключении к электросети, и их яркость легко регулировать наращиванием или снижением напряжения практически сразу после включения. Одним из важных преимуществ светодиодов является устойчивость к воздействию низких температур.

  • Красиво

Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные возможности для «игры» со спектрами, цепочки которых можно выстроить таким образом, чтобы световые акценты точно работали на образ. Изощренная цветодинамика, характерная для светодиодных модулей. Интересно, что игра со спектрами имеет и экологическое значение. Ведь кривые чувствительности, скажем, растений и человеческого глаза не совпадают: те спектры, которые комфортны для нашего глаза, часто дискомфортны для растений, и наоборот. Зональное использование различных светодиодных «цепочек» в тех интерьерах, где одновременно пребывают и растения, и человек, снимают эту проблему.

  • Представительно

Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся выразительно и необычно.